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Spatial Landau damping in plasmas with three-dimensional K distributions
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Laboratory for Solar and Space Physics, National Aeronautics and Space Administration,
Goddard Space Flight Center, Code 612.2, Greenbelt, Maryland 20771

(Received 4 November 2004; accepted 8 February 2005; published online 7 Aprjl 2005

The increase in linear Landau damping«ifdistributed plasmas compared to thermal equilibrium
plasmas is studied by solving a boundary value problem for the spatially damped plasma waves
generated by a planar grid electrode with an applied time harmonic potential. Solutions are
computed for the plasma potential versus the distance from the electrode for different values of the
parametek (kappa. The velocity parametar, of the distribution function is chosen so that, as the
parameterc varies, the kinetic temperature of the plasma remains constant. The exact solutions of
this problem are also compared to approximate solutions derived from the theory of normal modes,
that is, from the roots of the dispersion relation. This model problem demonstrates the significant
increase in Landau damping by electrons which occurs for small values of the param@t2005
American Institute of PhysicDOI: 10.1063/1.1885474

I. INTRODUCTION b (x,1) = Ak expli[kx— w(K)t]}, (1)

In space plasmas, ion and electron distribution functionyvhich are useful for the solution of initial value problems,
are usually observed to contain power law tails. This wasnd spatially damped normal modes,
first discovered during early measurements of solar wind ¢ _(x,t) = A(w)expli[k(w)x — wt]}, 2)
electrons wherex distributions (defined in Sec. Il were ) .
found to give a reasonable fit to the difaLinear Landau Which are useful for the solution of boundary value prob-
damping by electrons is greater in plasmas having particilms: In Eq.(1), the wave numbek is any nonzero real
distribution functions with power law tails than in plasmas at"umber and the complex angular frequenatk) is deter-

thermal equilibrium because there are more resonant paP—1Ined by_the plasma d|sperIS|on rslatlond IE E2), th? fre-
ticles available at higher energies to participate in the dampguencyw IS any NONzero real humber an t € complex wave
ing process. The magnitude of this effect is of interest innumberk(w) is determined by the plasma dispersion relation.

space physics where distributions are common and where Fora pllanar glectrode mmersed na p'as”.‘a in the plane
x=0 and driven with an applied voltagét) = ¢, sin(wt), the

collisionless processes, such as Landau damping and other ~ . . I .
. . . . . fsolutlon for the electrostatic potential in the plasma is ex-
wave-particle interactions, provide the primary means o
. o Fcted to take the form
plasma relaxation and plasma energization. The purpose 8
this paper is to compare the magnitude of Landau damping  ¢(x,t) = — ¢ sin(k;|x| — wt)exp(— ki|x|), 3)
in k and Maxwell distributed plasmas using a model problem

for which exact solutions can be analyzed in detail. OnIyWherek:kak‘ is the unique root of the dispersion relation

Landau damping by electrons shall be considered. with the smallest imaginary paftf it exists), k- andk; are

both real and positive, and, is a constant. If a unique root

The problem is to compute the spatial damping of EIeC'does not exist, as in the case of the Maxwell distribution,

trostatic plasma waves generated by a plane electrode driV(% en the “dominant” root of the dispersion relation must be

by a time hafm"”'c pqtent_lal. Here, one is concerned WIﬂ‘hsed insteadsee Sec. IX Equation(3) is the solution sug-
spatlgl damp'”g(d?‘mp'”g n ;pac)erather than tempqral gested by the theory of normal modes. Of course, the exact
damping(damping in time. As is well known, the damping 5. tion depends on the physical boundary conditions. In this
rates for the two types of damping are determined by theyaher one possible set of boundary conditions is used to
roots of the plasma dispersion relati@(k,)=0 where  gyeyelop an exact solution of the linearized Viasov equation
D(k,w) is the plasma dielectric functioh.The temporal  5nd the result is compared to the normal mode solut®n
damping problem is given the most attention in the literature, The significant increase of Landau damping in
probably for historical reasons. But both types of damping,._gjstributed plasmas was first studied in the pioneering pa-
are important in applications. pers of Thorne and Summetgnd Summers and Thorre.

In a spatially homogeneous plasma, the normal modes ofhey solved the plasma dispersion relation for a
oscillation are characterized by a frequency and wave numg-distributed, unmagnetized plasma, and computed the
ber determined by the roots of the dispersion I’e|ati0l’damping rate as a function of the real wave numkdor
D(k,w)=0. There are two separate classes of normal modesiifferent values ofx (kappa. The results were then com-

temporally damped normal modes, pared to the thermal equilibrium values. Analysis of colli-
sionless damping rates and the growth rates of various insta-
¥Electronic mail: jpodesta@solar.stanford.edu bilities in both magnetized and unmagnetized plasmas have
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since been carried out for various hybrid combinations of JE nee
and Maxwell distribution functions. Because it is impractical X =" c fdv + _5(X)005(wt) (6)
to mention all of the many references, just a few shall be 0

cited heré’** The work described in Refs. 6-11 and in manywheref and E are the perturbed electron distribution func-
related papers is important because of its wide range of agion and electric field, respectively. The variahids the x
plications in space physics. component of the velocity, that is,, and the dependence on
The outline of this paper is as follows. The boundarythe velocity components, andv, has been integrated out.
value problem for the dynamic shielding of a time harmonicThe fyll distribution functmn il fo(v) +f(x,v,t)] wheren,
sheet charge is derived in Sec. Il and its relationship to thes the equilibrium density andif,dv=1. In Egs.(5) and(6),
problem of an electrode with an oscillating potential is de-e~ ( is the electron chargey is the electron masg is the
scribed. Section Il provides the definition of tledistribu- ¢ component of the electric field is the permittivity of free
tion function and its statistical moments. In Sec. IV, theSpacepo is the surface Charge densi'@(x) is the delta func-
plasma dispersion function for thedistribution is derived in  tjon, andw= 0 is the driving frequency. Standard SI units are
such a way that the plasma dielectric function takes the samgsed throughout.
form as for the Maxwell distribution. The plasma dispersion  The right-hand side of Eq6) consists of two terms, the
relation for spatial damping is described in Sec. V. In Secfirst representing the charge density of the plasma and, the
VI, the solutions for static Debye shielding are briefly men-second, the “externally imposed” charge density. The source
tioned. In Sec. VII, the solution of the dynamic shielding term is an oscillating sheet charge with a charge density
problem is decomposed into near-field and far-field COMpOy,, cogwt) which acts as a field generator or generator of
nents and the solution is thereby obtained for an electrod9|asma waves. For a static charge distribution0 and, as
with an oscillating potential. In Sec. VIII, the exact solution jndicated below, the solution for the field is proportional to
for the plasma potential is computed for different values of eyp- IX|/\) whereX is the Debye length. Thus, the EdS)
and, in Sec. IX, the results are compared to the normal modgn (6) include the special case of static Debye shielding.
solution (3). As first shown by Landatf the physically correct solu-
tion of Egs.(5) and(6) is obtained by applying the Fourier
transform in space and the Laplace transform in time. Only
Il. BOUNDARY VALUE PROBLEM the steady state solution is of interest here, that is, the time
FOR DYNAMIC DEBYE SHIELDING asymptotic solution as— . This can be derived from the
full Fourier and Laplace transformed solutions as shown, for
The plasma waves generated by an electrode with aaxample, by Krall and Trivelpiedeand in other well-known
oscillating potential can be obtained from the solution of atextbooks >t
related problem. Consider the dynamic screening due to a Alternatively, the result for the steady state solution can
sheet charge in the plane=0 with a time harmonic charge bpe obtained directly from Eq¥5) and (6) by assuming a
density of the formp(x,t) =pod(x)codwt), wherep, is the  harmonic time dependence of the form éxmt) where w
surface charge densitg constantand 5(x) is the Dirac delta  contains a positive imaginary pasanishingly small which
function. It will be shown that the solution of this problem s allowed to approach zero at the end of the calculation. This
contains two components, a far-field electric field of the formapproach ensures causality. Thus, the steady state solution is
written as

Er(xt) = £o

2 sgrnx)cogwt), (4)
261 - (wy/o)] E(xt) = RAE(X w)e ], (7)
where sgfx) is the algebraic sign ok, plus a near-field
component consisting of spatially damped plasma waves thathereE is the complex amplitude. Hereafter, a tilde over any
propagate away from the source. The near-field component guantity denotes its complex amplitude. Note that the in-
a solution of the linearized Vlasov equations with the prop-phase and quadrature component&@f,t), that is, the com-
erty that the potential approaches sin(wt) asx—0 and  ponents proportional to c6st) and siwt) are given by the
vanishes a$ — . Thus, this is the solution of interest, that real and imaginary parts &(x, w), respectively.
is, this is the field generated by an electrode with an oscil-  Adopting the ansat£7), together with a similar ansatz
lating potential. The complete solution is derived as follows.for f(x,v,t), and then taking the Fourier transforith re-

By symmetry, d/dy=d/9z=0. Thus, the waves will spect tox) of Egs.(5) and(6), one finds
propagate along thedirection. At high frequencies, the mo-
tion of the ions is negligible due to their much larger mass.
The ions simply provide a uniform background of positive
charge which preserves overall charge neutrality. Assuming
that the magnitude of the forcing is sufficiently small, the

(—iw+iko)f(kv, ) = %E(k,w)%’, (8)

response of the plasma is governed by the linearized Vlasov jkE = - No® Tdv + o 9
equations €o €
of + Jf _eEdfo =0 (5) Solving Eq.(8) for f and then substituting the result into Eq.

at v&x m dv (9), one finds the solutions
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~ e fov) = The next step in the solution of the physics problem at
f(k,v,0) = km/ v = (/K Ek o), (100 hand is to separate the electric fiélth) into near-field and
far-field components. First, however, it is necessary to com-
pute the plasma dispersion function.
= Po
E(k,w)=———— 11
ko) = e Dkw)’ a1

Ill. THREE-DIMENSIONAL & DISTRIBUTION
wheref{(v)=dfo/ dv is the derivative offy(v) with respect to
v andD(k, w) is the plasma dielectric function. The plasma
dielectric function is defined by

In astrophysics and space physics, the isotraepitistri-
bution in three dimensions is usually defined by

2\ =(k+1)
2 o ! — _U

f fK(v)—AK<1+ ) ., k>1/2, 17

D(kw)=1 -2 To® im0, (12 kv
ke J_. v = (wlk)
where v=(vy,vy,v,) is the velocity vector,v=(v5+v]

wherew)=ne?/ €;M is the electron plasma frequency. After frvi_)llz, andu, is some characteristic velocity. The normal-
an integration by parts, the plasma dielectric function can bézation constant Is
written in the equivalent form 1 (k)

A= — . (18)
25 0 fo(U) (m}g)SIZ\c‘K F(K‘l/Z)
D(k,w)=1- ———dv, Im(w)>0, 13
(k) k2 J_. (v- wlk)? v (@) 3 and is chosen such that
or, making the change of variables=kuv/|k|, 47-,f f (v)v2dv =1. (19)
0
2 fo(kol|k
D(k,w)=1 ~2p Mdv Im(w) >0. (14) The conditionk>1/2 is necessary for this integral to con-

2 _ 2 ’
k) = (v = wilK) verge. Thex distribution is closely related to thg distribu-

. . . . .tion. In fact, thegB function arises when computing the nor-
This last change of variables is permitted because the Fouri alization factorA,, and the statistical moments bf. In the

transform variablek is real, that is, Infk)=0. Equation(14) limit as k— oo, the k distribution approaches the well-known

shows that iffo(v) is an even function ob, that is, there is M Il distributi 22 ludina th i
no equilibrium current flowing in the plasma, thBitk, ) is tioixwe Istributione ™ o, including the correct normaliza-

an even function ok. This is the case for all the plasmas . . .
studied here. The velocity moments of the distribution are given by

The fact thatD(k,w) is an even function ok implies n+3 n+1
that the inverse Fourier transform of E4.1) can be written 2 r 2 K=
as (V" = —=(Kkvg)"? , (20)

N 1
— r{-3)
~ sin(kx
By = 20 | S0 g (19 o |
meg o KD(K w) wheren is an integer and €n<2(x-1). For an arbitrary

real powern=0, (v") is finite if and only if n<2x-1. In

This is the solution of the dynamic screening problem firstapplications, the kinetic temperature of an isotropidistri-
obtained by Buckle¥’ in 1968. The keen observer may note pytion is defined by the relation

that Eq.(11) contains a pole a=0 while Eq.(15) does not.

To see this, note th@(k, w) is a continuous function d as Em<v2> = ngT, (21)
k approaches zero along the real axis and Dél,w) is 2 2

nonzerdsee Eq(37)]. Therefore, the integrand in EQL5) is
continuous ak=0. If the inverse Fourier transform of Eq.

(11) is written as 2_[2k=3\ksT
UO— m

which, using Eq(20), implies

: (22)
K

E(x,) = 2Po lf ?:S?Ij))dh if Is‘gl((gdk} (16)  wherekg is Boltzmann’s constant. The second momert

LS~ = is finite if and only if «>3/2. The family of all« distribu-
éions at the same absolute temperafliie obtained by sub-
stituting v3=v2(x) from Eq. (22) into Eq. (17). Only distri-
butions withx>3/2 are allowed.

then the first integral on the right-hand side contains the pol
and the second integral, which is nonsingular, yields Eq
(15). The first integral on the right-hand side of E6) can

be defined as the Cauchy principal value, in which case it

equals zero by symmetry. A mathematically rigorous proof oy, p| ASMA DISPERSION EUNCTION

Eq. (15 must be based on the theory of distributions because

the source term in Eq6) contains a delta function. This is Integrating the three-dimensionat distribution (17)
discussed further in the Appendix. overvy andv,, one finds the reduced distribution function
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TABLE I. Plasma dispersion function and dielectric function for the first few integer valuesfedr an isothermal family ok distributions,x>3/2 andvg
should everywhere be replaced tyf«) defined by Eq(21).

K Z,(¢) z DK, ) =1 ~(w}/Kv)Z (= ! [Klvg)

1 i(1-iz)™t 7=¢ 1+(wh/K2vd)(1-i2)2

2 (iI\2)[(1-iz)2+(1-i2)7Y z=¢/\2 1+(wh/ 2203 [2(1~i2) 3+(1-i2)2]

3 (i13V3)[2(1-i2)*+3(1~i2) 2+3(1~i2) ] 2=¢1\3 1+(wp/ 3o [2(1-12)*+2(1-iz) 2+ (1-i2) 2]

4 (i/110)[2(1-i2)*+4(1-iz)2 7=¢&l2 1+(wh/ 20k )[8(1~iz) >+ 12A1~iz)™

+5(1-iz)2+5(1-iz)"Y] +10(1-iz)3+5(1-iz) 2]
v? | (n-1/2) T(n) = T(m+n)(1-iz\™"
f (v)= m)gAK[l +— | , k>3/2, (23 7 (&) =i n ( 'Z> 27

K (&) n'2  T'(2n) ,%0 mi 2 » (27

wherev =v,. It should be noted that the definition ofused wherez=¢/ \,JE_ The results for the first few values ofare

here,v=v,, is different from the definition ob used in the jisted in Table I. For arbitrary real values of the parameter
last section. The pl_asma dlelectrlc_fun_ctlon is obtained by, simple way to evaluate the integ(&b) is to first derive a
substituting Eq(23) into Eq. (14). This yields differential equation for it and then express the solution in

w2 o terms of a hypergeometric function. This is the approach
D(k,w)=1-—2p—22,'<(—), (24)  developed by Podesti.Another approach is to use the
kg “\IKvo theory of contour integration. This is the original approach
where, for Int&) >0, adopted by Mace and Hellbet§.Once it is expressed in
. terms of Gauss’ hypergeometric function, the well-
7 (&)= 1_ I'(x) 1 dv (25 documented properties of the hypergeometric function can
“ Tk =112 ). (v = (L +v k)< be applied to derive many useful properties of the plasma

dispersion function. This program was carried out by
is the plasma dispersion function for tkedistribution and  pgdestd®

Z'(¢§)=dZ/d¢. For Im(€) <0, the functionz,(¢) is defined by
analytic continuation. In the limit ax—o, the function V. DISPERSION RELATION FOR SPATIAL DAMPING

Z.&) approaches the limit The dielectric function(24) has been defined fdk real

» g and o complex. To obtain the dispersion relation for the

dv, Im(¢§)>0, (26) spatial damping problem it is necessary to extend the defini-

tion of D(k, ) to the case where is real andk is complex.

which is the well-known plasma dispersion function for theA description of this procedure is included here for com-

Maxwell distribution. Thus the dispersion functi¢®5) for ~ pleteness, however, the advanced reader may skip this sec-

the isotropicx distribution generalizes the well-known result tion if desired.

(26) for the isotropic Maxwell distribution. The integral in Eq.(12) actually defines two different
The dispersion functior{25) was derived by Hellberg analytic functions depending on whether 0 ork<0. This

and Macé® [see Eq(10) in Ref. 9 who denote this function is because the integral is discontinuous as the complex vari-

by Z.m(£). Independently, the same function was derived inable {=w/k crosses the real axis. For example, for the Max-

an unpublished work by Podetavho denotes the function Well distribution,

1
Z(§)—V,—7r_r y:

by ZK(g)..The I.atter ngtanon shalll bg fqllowed hgre. The 1 [ &t 7(9), Im(&) > 0
plasma dielectric function for the distribution was given in — v = — 2 ,

the form(24) by Hellberg and Macgsee Eq(61) in Ref. 9] V) 0= ¢ Z(§) - 2\mie™™, Im(§ <0

and, independently, it was given in the same form by (28)

Podestd? It should be noted that the plasma dispersion func- ] ) ]
tion (25) is different from the functiorZ’(&) defined in an where the functiorZ(¢) is defined throughout the complex

earlier work by Summers and Thorhea definition also Plane by analytic continuation.

adopted by Mace and Hellbet§.These pioneering papers To take this into account, consider the function

employ an exponenk+1 rather thank in the integrand. w? (o

Consequently, the functiod, (&) of Summers and Thorfé Di(k,w)=1 ‘k—zvp—zZK koo’ (29
0

is more closely related to the derivatiZ&(¢) of the function
defined by Eqg.(25). The definition(25) is convenient be- wherek>0 is real and positivep is any complex number,
cause it preserves the well-known for@4) for the plasma and, as alwaysZ.(¢) is defined throughout the complex
dielectric function** plane by the analytic continuation of E@5). If w is a fixed
For integer valuesx=n, the integral (25) is readily real number, then Eq29) defines a unique analytic function
evaluated using the calculus of residues with the result ~ of k which reduces to the functiob(k,w) defined in Eq.
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(24) whenk is real and positive. Likewise, consider the func- =0.577 withA,/\p increasing to 1 ag — . More informa-

tion tion about the Debye length ir-distributed plasmas can be
W2 (- found in the study by Bryari
D_(kw)=1-=% (—) 30
(ke kzvg “\ kvg (30)

wherek< 0 is real and negative and is any complex hum- v||. SEPARATION OF THE NEAR-FIELD

ber. If w is a fixed real number, then this defines a uniqueAND FAR-FIELD COMPONENTS

analytic function ofk which reduces to the functiod(k, w)

in Eq. (24) whenk is real and negative. If x| is very large, then the integrand in E€L5) is
The two functionsD, and D_ are different except that apidly oscillating and the dominant contribution to the inte-

along the real axiD,(k,w)=D_(-k, ), k>0, so that, as 9ral occurs neak=0. To see this, write the integral in Eq.

discussed previousD(k, ) in Eq. (24) is an even function (15 in the form

of k. Moreover, from the definition&9) and(30), it is clear = sin(kx) * sin(u)
that for any complex value d the two functions are related J mdk: sgr(x)f mdu, (39)
by D,(k,w)=D_(-k, w). 0 ’ 0 '
It is logical to define where|x| is large and sgx) denotes the algebraic sign xf
D.(kw), Rek) >0 In the neighborhood dt=0, the functionD(k, ) is approxi-
D(k,w) = : (31  mately constant so that it can be removed from the integral
D_(k,w), Rek) <O )
with the result
This yields a unique analytic continuationBfk, ) into the “ sin(u) .
complexk plane such that the dispersion relation for spatial J u= . (36)
o UD(U/|X|,w) 2D(0,w)

Landau damping takes the forBi(k,w)=0. For >0, the

componenD, is associated with waves that propagate fromygjng the asymptotic series or the closed form expressions

left to 'right andD_ is, a§sociated with waves that propagates, ihe plasma dispersion function, it follows that, for real
from right to left. It is important to note, however, that the

) i T 4 values ofk,
function defined by Eq(31) is discontinuous across the 5
imaginary axis in the complek plane. D(k o) ~ 1 - wWp ask— 0 (37)
1 - 2 .
w
VI. SOLUTION FOR STATIC DEBYE SHIELDING Therefore, the far-field component of the electric fi€l8) is

In this section it is shown that in the low frequency limit 9iven by
w— 0 the solution of the boundary value problem defined by . Po
Egs.(5) and(6) reduces to the well-known solution for static ~ Er(X,®) = 261~ (0¥0D)] sgn(x). (38)
Debye shielding. By inspection, the solutigthl) for the € @
electric field is primarily determined by the properties of theln the absence of the plasma, the electric field due to the
plasma dielectric functiori24). In the low frequency limit sheet charge ifpy/2€y)sgnx). In the presence of the plasma
w=0, the relation the electric field at large distancé38) is modified by the
long-wave-number dielectric function :(wrz,/wz). This be-

Z/(0)=- (2K_ l) (32)  havior was found by Landafiin his solution of the spatial
damping problem and also by Buckfgyn his solutione(x)
for the derivative of the plasma dispersion functfomay be ~ of the dynamic screening problem.
substituted into Eq(24) to obtain Writing the total electric field(11) in the form E=Ey
5 +Eg, one finds for the near-field component
D(kw—O)—1+—“’P—<2"_1>=1+L (33) 1 1
’ K2\« (Kh)2" En(k ) = 22 (39)

; ikeo| D(k,w) 1-(wZe? |’
where, by definition\, is the Debye length? Thus, the ] ) o
potential due to a static sheet charge decays like( expThe near field has the important property that it is regular at

~|X|/X,) where the Debye length for e-distributed plasma k=0, thatis, it behaves like a positive integral powekafs

is given by k—0 and, therefore, the electrostatic potentiflk, )=
Yo « \Y2 [2-3\102 —EN(k,w)/i_k is wgll behaved neak=0. As a consequence,
Ne=— = \p- (34)  the potential vanishes g% — . To prove this, write the
wy\2k—1 2k—-1 . . ~ .
P inverse Fourier transform of the potentiilk, w) as a cosine

Here, the last equality on the right-hand side holds for artransform, which is possible sind2(k,w) is an even func-
isothermal family of « distributions and MAp  tion of k, and then integrate once by parts.

=(eokgT/Nge?)Y? is the Debye length for the Maxwell distri- As discussed in Sec. Il, the plasma waves generated by
bution. In general, the Debye length forkadistribution is  an electrode with an oscillating potential are described by the
less than but close to that of a Maxwell distribution as longnear-field solution(39). Hence, the desired solution of the
as « is not too close to 3/2. Fok=2, one finds\,/\p original boundary value problem is given by
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(dotted of the potential¢(x,t) com-
puted from Eq(41) at the frequencies
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(right). From top to bottom, results are
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shown for k-distributed plasmas with
parametersk=o (Maxwell distribu-
0 50 100 0 50 100 tion), k=4, andx=2, respectively.
5| -
- -2
0 50 100 0 50 100
x/?«,D x/?tD
Sk = Po 1 1 (40) bye lengths of the source. These solutions are of no interest
Pk w) = Ke,| D(k, o) 1—(a),2)/w2) ' here and are discussed in detail by Buckféyhen ol w,

>1, electrostatic plasma waves are excited in the phane
whereD(K, w) is given by Eq.(24). If the removal of the far =0 and undergo spatial Landau damping as they propagate
field somehow seems arbitrary, note that, in practice, on@way from the source. The damping increases as the param-
may eliminate the far field by introducing a second electrod%terw/wp is increased. Aso/w,— 1%, the wavelength ap-

with an equal and opposite charge, thereby forming a capacproaches infinity and the damping approaches zero; this is
tor. The field exterior to the capacitor is then given by Eq.the |ong-wavelength limit.

(40). The inverse Fourier transform of EG0) yields The exact solution for the potentig(x, t) is obtained by
- oo [~ 1 1 cogkx) computing the inverse Fourier transform of Hg0) using
, = — — dk, . . . .

P(X, ) meo)y | Dk @) 1_(w§/w2) 12 the fast Fourier transforngFFT) algorithm. The dielectric

function D(k, w) is computed using the closed form expres-
(41)  sions in Table I or, for the Maxwell distribution, by using the
very accurate and efficient numerical algorithm developed by
autschf’ All calculations are performed using the dimen-
sionless variables’ =w/w, and k’=k\p where the Debye
length\p is defined in Sec. VI. In addition, all the distribu-
tion functions are characterized by the same absolute tem-
peratureT. The results for the in-phase and quadrature com-
Vil ponents of¢(x,t) are plotted in Fig. 1 for the cases/ w,

- SOLUTIONS FOR THE ELECTROSTATIC =1.1 andw/ w,=1.2. The solutions are even functionsxao
POTENTIAL P . . .

only the regionx>0 is shown in the figure.

In general, the solutions behave differently depending on  The results shown in Fig. 1 clearly illustrate the depen-
whether the driving frequency is greater or less than thelence of the damping or. As « decreases, the particle
plasma frequency. Below the plasma frequency, whemopulation in the high energy tails increases and, conse-
o/ wy<1, the solutions are rapidly damped within a few De-quently, the damping increases because there are more reso-

where the exact expression Dfk, w) is given by Eq.(24).
This integral converges because the quantity in square brac
ets obeys the asymptotic relatiofs-]~k? as k—0 and
[---]~1 ask—-¢e. In the following section, the Fourier inte-
gral (41) is computed numerically.
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FIG. 2. Contour plot showing the poles of|Di(k, w)| for the Maxwellian

dispersion relation in the case/w,.=1.1. The dominant pole is the one
furthest to the right. A pole dt\p=1.62 having a width comparable to the
dominant pole is a purely damped mode and is not shown on this plot.

nant particles available to participate in the damping process
Landau damping is strongest for small valueskpuch as
k=2, 3, or 4. For moderate to large values«gthe damping

approaches the thermal equilibrium value. In space plasma

such as the solar wind and the magnetosphéfe;*obser-
vations typically yield values ranging from=3 to x=6.

IX. APPROXIMATE SOLUTIONS

Phys. Plasmas 12, 052101 (2005)

ever, they can be estimated from the exact soluti@dsand
(41). The limit of Eq.(15) asx— 0 is obtained by using the
limit D(k, w) — 1 ask— o0, which implies

E(x w)=— sgr(x) asx— 0. (44)
Subtracting the far-field38) from the total field(44), one
obtains the near-field

2
En(x ) = - &(T“’P—z>sgr(x) asx—0,  (45)
0\ W —wp
which implies

2

__ Po @y
Ep=—— . 46
0 2€o<w2—w2) (46)

p

Now proceed to the evaluation @f,. In the limit asx— 0,
Eq. (41) yields

This integral must be computed numerically. For reasons that
are not immediately obvious, the real part of E4j?) is zero,

1 1 dk

¢(X 0= D(k, w) 1 —(a)glwz) K

TEQ

(47)

at least, for the cases considered here. As a consequence, the

%otential and the electric field are out of phase#\2 rad.
sing a standard numerical integration routine to evaluate
the integral in Eq(47), one finds that fow/w,=1.1,

\ -7.65 fork=2
bo = Poto ! _g856 for k=4 (48)
€0 -8.75 for k=,

Itis of interest to compare the exact solutions discusse&ypstituting these values into E@3), multiplying by e,
in the last section with the solutions suggested by the theorynd then taking the real part, one finds

of normal modes, namely,

E2PP(x, o) = Eg exli(k, +iky)|xIsgr(x)
and

GPPO(X, ) = g expfi (k +iky)[X[], 43

where E; and ¢, are constants anél(w) =k, +ik;, with k;
>0 andk;>0, is the dominant root of the dispersion rela-
tion. For ax distribution with integer values of there exists

(42)

a unique root of the dispersion relation with the smallest

imaginary part, the least damped root, which is the “domi-
nant root” in this case. For the Maxwell distribution the dis-

persion relation possesses an infinite number of roots with
decreasing imaginary part so there is no “least damped” root

in this case. A contour plot showing the locations of the roots

in the first quadrant is shown in Fig. 2. The dominant root in
this case is the one furthest to the right in Fig. 2 and is such 2¢° - 3=

that the function 1JD(k,w)| has a pole at this point with a

PP, ) = [ bolsin(|x| =

To complete the solution it is necessary to find the roots of
the dispersion relation.

For k=2, the dispersion relation from Table | may be
written as

wt)exp(— ki|x|). (49

2
1- gg(— i2)2(1-iz) %+ (1-i2) 2] =0, (50)
where z= w/\ZkUO or, equivalently, z=(w/wp)/K\p. By
omitting the absolute value signs dq this becomes the
equationD,(k,w)=0 discussed in Sec. V. Making the change
f variable z=iy followed by x=(1+y)™%, one obtains the
equation

w2
-1
(l)

(52)
p

very broad peak. The other roots have poles with succedf o> w,, then, by Descarte’s rule of signs, this equation has
sively narrower peaks. The fact that the solution of the spaene positive real root. Using Newtons method with the initial

tial damping problem is dominated by this one root has beeguess x=3/2, one finds,

noted previously by Goufd and by Buckle)}.5
The values of the coefficient, and ¢, in Egs.(42) and

for w/wy=1.1, the root x
=1.544 04.... Using this root to factor the polynom{aL),
the remaining roots are then given by the quadratic formula

(43) cannot be determined from the dispersion relation, howwith the resultk\p=+0.257+0.0890
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For k=4, the dispersion relation from Table | may be Using the roots of the dispersion relation just obtained,
written as the approximate solution$49) at the driving frequency

w/wp:1.l take the form
2

1+5,22 181 -2+ 121 -2+ 101 - i) B(x,t) = 20 (7.65sin(0.257x| - wt)exp(- 0.089x))

€MD

+ 5(1 - iZ)_Z] = 0, (52) (54)
where z=w/2kv, or, equivalently,z=(w/w,)/\5k\p. The  for k=2,
roots are found using Newton’s method once an approximate
root is obtained by first plotting the function [D(k, w)| in d(x,t) = &(8.56)sin(0.233x| - wt)exp(— 0.025x|)
the complexk plane. Forw/w,=1.1, this procedure yields €ohp
the rootkAp=0.23340.0251. (55)

For k=, the dispersion relation for the Maxwell distri-

for k=4, and

bution may be written as

2 B(x,t) = -2 (7.795sin(0.244x| - wt)exp(— 0.00168X))
D(k,w)=1-—L2827'(& =0, (53 €oMp
w (56)

whereé=w/kv or, equivalentlygz(w/wp)/\e’ik)\D. The par-  for k=«. Here, the distance is in units of \p. The exact

tial derivative of D with respect tok is computed using the solutions obtained from Ed41) and the approximate solu-
differentation formula foZ(¢) and then the roots d63) are  tions (54)—(56) are compared in Fig. 3. As can be seen from
computed using Newton’s method. An approximate root isFig. 3, the normal mode solutions provide a reasonably good
obtained by first plotting the function D(k, )| in the com-  fit to the exact solutions. It should be mentioned that the
plex k plane. Foro/w,=1.1, this procedure yields the root amplitude in Eq.56) has been reduced from 8.75, the true
kAp=0.244+40.001 68. value of the potential at=0, to the value 7.75 in order to
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give a better fit to the exact solution. This adjustment isalso like to thank the referee for his thorough examination of
necessary because for the Maxwell distribution there is a@he paper and for many helpful and insightful comments.
rapidly damped component of the solution which is not in-

pludt_ad in the one term approximatiof9). It should pe k(_apt _ APPENDIX: DERIVATION OF EQ. (15)

in mind that the goal of the normal mode approximation is

only to obtain the real and imaginary parts of the wave num-  In this appendix it is shown that the inverse Fourier
ber, not the wave amplitudéhe amplitude cannot be in- transform of Eq.(11) is given by Eq.(15). Consider the
ferred from the dispersion relatipnWith this caveat, the function 1k which has the inverse Fourier transform
results of this section show that the normal mode solutionsgn(x)/2. This Fourier transform pair is denoted by

yield a reasonably good approximation to the exact solutions.

1
— sgnix -. Al
5 S9MX) = (A1)
X. DISCUSSION The inverse Fourier transform of & /cannot be computed

using the definition of the Fourier transform in terms of an

integral. It only has meaning in the sense of the theory of

trode with an oscillating sheet charge is closely related to the. .~ . )
boundary value problem studied by GoafdGould studied TO:',]'Zt':ﬁgtf;fgffeggr§"§;ﬂ? E;Vfl @?i’tec Ezp&)lliffﬁﬁ;
the excitation of plasma waves by a pair of two closelyf ' '
spaced grid electrodes, a dipole layer. It is interesting that the

electrostatic potential due to an oscillating dipole layer is i 111 1 . 1
identical to the electric field of an oscillating sheet charge.  ikD(k) ik| D(k} D(0)| ikD(0)

Therefore, the boundary value problem studied in this paper )
is similar in many respects to the problem studied by GouldWhere the dependence anhas been omitted to focus atten-

Consider a dipole layer with charge density tion on thek depen.dence. Applying Fhe Fourier transform
operatorF to both sides of this equation and then using the

The boundary value problem for a transparent grid elec

(A2)

~ o X ; )
(%, w) = ?0[5(X+ h) - s(x— )], (57) linearity property, one obtains
]_—l 1 — 1 1 _1 — _1
whereoy/2 is the surface charge density and the distance ikD(k) | ik| D(k) D(0)
between the electrodes is small. The Fourier transform yields
~ . . 1
p(k,w) =idosin(kh). (58) { KD(0) ] : (A3)
In the limit h_—_>0, 0o— %, ggh—po=const, Eq.(58) be- g indicated in the discussion following E¢39), the first
comesp(k, w)=ikpo or, equivalently, term on the right-hand side of E¢A3) contains no singu-
DX, ) = pod’ (X). (59) larities and can be defined as an ordinary integral &véhe

. o singularity is contained in the second term on the right-hand
This should be compared to the charge density in @3  sjde which has an inverse Fourier transform given by Eq.

namely, (A1). Thus, the first and second terms on the right-hand side
(X, ) = ped(X). (60)  of Eq.(A3) are equivalent to the near-field and far-field com-
. o~ - ponents denoted by andEg in Sec. VII, respectively.
Therefore, if one makes the substitutioBs-—ik¢$ and po Independently, it is shown in Sec. VII that the integral in

—ikpg in Eq. (11), it follows that the solution for the electric Eq. (15) is equal to the sum o« andE-. Therefore. the
. N F- ’

field due to an oscillating sheet charge and the solution fo[nverse Fourier transform in EGA3) must be equal to the
the potential due to a dipole layer are equivalent, except forntegral in Eq.(15) This proves the desired result. In short,

a minus sign. . Co : . .
. . . ._according to the theory of distributions, the singularity which
The important difference between the two solutions 'Soccurs in the inverse Fourier transform of Etyl) is handled

that the potential derived in Sec. VIII is an even function Ofcorrectly by using the Cauchy principle value to evaluate the

x whereas the potential in Gould's problem is an odd fun.c'integral. The same recipe also produces the correct inverse

tion of x. Consg:-quently, the solution of Goul_ds problem is Fourier transform of 14 given in Eq.(AL).
not an appropriate model for the electrostatic waves gener-
ated by a plane electrode with an applied potential since, byiy; . vasyliunas, J. Geophys. Reg3, 2839(1968.
physical considerations, the correct solution must have evefs. olbert, inPhysics of the Magnetospherslited by R. L. Carovillano, J.
symmetry. 3F. McClay, and H. R. RadoskD. Reidel, Dordrecht, 1968p. 641.
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